Understanding malaria

Johns Hopkins Malaria Research Institute researchers have determined the function of the series of proteins within the mosquito that transduce a signal enabling the insect to fight off infection from the parasite that causes malaria in humans.

Together, these proteins known as immune deficiency (Imd) pathway signal transducing factors are analogous to an electrical circuit.

As each factor is switched on or off it triggers or inhibits the next, finally leading to the launch of an immune response against the malaria parasite. The study was published June 7 in the journal PLoS Pathogens by researchers at the Johns Hopkins Malaria Research Institute.

The latest study builds upon earlier work of the research team, in which they found that silencing one gene of this circuit, Caspar, activated Rel2, an Imd pathway transcription factor of the Anopheles gambiae mosquito.

The activation of Rel2 turns on the effectors TEP1, APL1 and FBN9 that kill malaria-causing parasites in the mosquito’s gut.

More significantly, this study discovered the Imd pathway signal transducing factors and effectors that will mediate a successful reduction of parasite infection at their early ookinete stage, as

well as in the later oocyst stage when the levels of infection were similar to those found in nature.

‘€œIdentifying and understanding how all of the players work is crucial for manipulating the Imd pathway as an invention to control malaria.

We now know which genes can be manipulated through genetic engineering to create a malaria resistant mosquito,’€ said Professor George Dimopoulos of the Department of Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health.

To conduct the study, Dimopoulos’s team used a RNA interference method to “knock down” the genes of the Imd pathway. As the components were inactivated, the researchers could observe how the mosquito’s resistance to parasite infection would change.

‘€œImagine a string of Christmas lights or other circuit that will not work when parts aren’t aligned in the right sequence. That is how we are working with the mosquito’s immune system,’€ explained Dimopolous.

‘€œWe manipulate the molecular components of the mosquito’s immune

system to identify the parts necessary to kill the malaria parasites.’€

Malaria kills more than 800 000 people worldwide each year. Many are children.

Author

  • Health-e News

    Health-e News is South Africa's dedicated health news service and home to OurHealth citizen journalism. Follow us on Twitter @HealtheNews

    View all posts

Free to Share

Creative Commons License

Republish our articles for free, online or in print, under a Creative Commons license.


Related

Leave a Reply

Your email address will not be published. Required fields are marked *

Stay in the loop

We love that you love visiting our site. Our content is free, but to continue reading, please register.

Newsletter Subscription

Enable Notifications OK No thanks